How Multirobot Systems Research will Accelerate our Understanding of Social Animal Behavior

TitleHow Multirobot Systems Research will Accelerate our Understanding of Social Animal Behavior
Publication TypeJournal Articles
Year of Publication2006
AuthorsBalch T, Dellaert F., Feldman A., Guillory A., Isbell C.L., Khan Z, Pratt S.C., Stein A.N., Wilde H.
JournalProceedings of the IEEE
Volume94
Issue7
Pagination1445 - 1463
Date Published2006/07//
ISBN Number0018-9219
KeywordsAcceleration, Animal behavior, ant movement tracking, Artificial intelligence, biology computing, Computer vision, control engineering computing, Insects, Intelligent robots, Labeling, monkey movement tracking, multi-robot systems, multirobot systems, robotics algorithms, Robotics and automation, social animal behavior, social animals, social insect behavior, Speech recognition, tracking
Abstract

Our understanding of social insect behavior has significantly influenced artificial intelligence (AI) and multirobot systems' research (e.g., ant algorithms and swarm robotics). In this work, however, we focus on the opposite question: "How can multirobot systems research contribute to the understanding of social animal behavior?" As we show, we are able to contribute at several levels. First, using algorithms that originated in the robotics community, we can track animals under observation to provide essential quantitative data for animal behavior research. Second, by developing and applying algorithms originating in speech recognition and computer vision, we can automatically label the behavior of animals under observation. In some cases the automatic labeling is more accurate and consistent than manual behavior identification. Our ultimate goal, however, is to automatically create, from observation, executable models of behavior. An executable model is a control program for an agent that can run in simulation (or on a robot). The representation for these executable models is drawn from research in multirobot systems programming. In this paper we present the algorithms we have developed for tracking, recognizing, and learning models of social animal behavior, details of their implementation, and quantitative experimental results using them to study social insects